Transcription of hupSL in Anabaena variabilis ATCC 29413 is regulated by NtcA and not by hydrogen.
نویسندگان
چکیده
Nitrogen-fixing cyanobacteria such as Anabaena variabilis ATCC 29413 use an uptake hydrogenase, encoded by hupSL, to recycle hydrogen gas that is produced as an obligate by-product of nitrogen fixation. The regulation of hupSL in A. variabilis is likely to differ from that of the closely related Anabaena sp. strain PCC 7120 because A. variabilis lacks the excision element-mediated regulation that characterizes hupSL regulation in strain PCC 7120. An analysis of the hupSL transcript in a nitrogenase mutant of A. variabilis that does not produce any detectable hydrogen indicated that neither nitrogen fixation nor hydrogen gas was required for the induction of hupSL. Furthermore, exogenous addition of hydrogen gas did not stimulate hupSL transcription. Transcriptional reporter constructs indicated that the accumulation of hupSL transcript after nitrogen step-down was restricted primarily to the microaerobic heterocysts. Anoxic conditions were not sufficient to induce hupSL transcription. The induction of hupSL after nitrogen step-down was reduced in a mutant in the global nitrogen regulator NtcA, but was not reduced in a mutant unable to form heterocysts. A consensus NtcA-binding site was identified upstream of hupSL, and NtcA was found to bind to this region. Thus, while neither hydrogen gas nor anoxia controlled the expression of hupSL, its expression was controlled by NtcA. Heterocyst differentiation was not required for hupSL induction in response to nitrogen step-down, but heterocyst-localized cues may add an additional level of regulation to hupSL.
منابع مشابه
Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413.
A 10-kb DNA region of the cyanobacterium Anabaena variabilis ATCC 29413 containing the structural genes of the uptake hydrogenase (hupSL) was cloned and sequenced. In contrast to the hupL gene of Anabaena sp. strain PCC 7120, which is interrupted by a 10.5-kb DNA fragment in vegetative cells, there is no programmed rearrangement within the hupL gene during the heterocyst differentiation of A. v...
متن کاملNtcA-dependent expression of the devBCA operon, encoding a heterocyst-specific ATP-binding cassette transporter in Anabaena spp.
The devBCA operon, encoding subunits of an ATP-binding cassette exporter, is essential for differentiation of N(2)-fixing heterocysts in Anabaena spp. Nitrogen deficiency-dependent transcription of the operon and the use of its transcriptional start point, located 762 (Anabaena variabilis strain ATCC 29413-FD) or 704 (Anabaena sp. strain PCC 7120) bp upstream of the translation start site, were...
متن کاملEffect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium Anabaena variabilis ATCC 29413.
Heterocysts are terminally differentiated cells of some filamentous cyanobacteria that fix nitrogen for the entire filament under oxic growth conditions. Anabaena variabilis ATCC 29413 is unusual in that it has two Mo-dependent nitrogenases; one, called Nif1, functions in heterocysts, while the second, Nif2, functions under anoxic conditions in vegetative cells. Both nitrogenases depended on ex...
متن کاملThe coxBAC operon encodes a cytochrome c oxidase required for heterotrophic growth in the cyanobacterium Anabaena variabilis strain ATCC 29413.
Three genes, coxB, coxA, and coxC, found in a clone from a gene library of the cyanobacterium Anabaena variabilis strain ATCC 29413, were identified by hybridization with an oligonucleotide specific for aa(3)-type cytochrome c oxidases. Deletion of these genes from the genome of A. variabilis strain ATCC 29413 FD yielded strain CSW1, which displayed no chemoheterotrophic growth and an impaired ...
متن کاملMolecular Analysis of the psaC Gene Encoding the F(A)/F(B) Apoprotein of Photosystem I in the Filamentous Cyanobacterium Anabaena variabilis ATCC 29413.
In cyanobacteria, green algae, and higher plants, the psaC gene encodes PsaC, the apoprotein for two iron-sulfur clusters, FA and FB, located in the PSI complex in the thylakoid membrane. FA and FB act as the terminal electron acceptors in the PSI complex (reviewed in ref. 2). Our research objective is to develop a genetic system in which various hypotheses concerning the structural and functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 74 7 شماره
صفحات -
تاریخ انتشار 2008